Diagonalization of compact operators in Hilbert modules over finite W ∗ - algebras

نویسنده

  • V. M. Manuilov
چکیده

It is known that a continuous family of compact operators can be diagonalized pointwise. One can consider this fact as a possibility of di-agonalization of the compact operators in Hilbert modules over a com-mutative W *-algebra. The aim of the present paper is to generalize this fact for a finite W *-algebra A not necessarily commutative. We prove that for a compact operator K acting in the right Hilbert A-module H * A dual to H A under slight restrictions one can find a set of " eigenvec-tors " x i ∈ H * A and a non-increasing sequence of " eigenvalues " λ i ∈ A such that K x i = x i λ i and the autodual Hilbert A-module generated by these " eigenvectors " is the whole H * A. As an application we consider the Schrödinger operator in magnetic field with irrational magnetic flow as an operator acting in a Hilbert module over the irrational rotation algebra A θ and discuss the possibility of its diagonalization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonalization of compact operators in Hilbert modules over C-algebras of real rank zero

It is known that the classical Hilbert–Schmidt theorem can be generalized to the case of compact operators in Hilbert A-modules H∗ A over a W ∗-algebra of finite type, i.e. compact operators in H∗ A under slight restrictions can be diagonalized over A. We show that if B is a weakly dense C∗-subalgebra of real rank zero in A with some additional property then the natural extension of a compact o...

متن کامل

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

The Atkinson Theorem in Hilbert C-modules over C-algebras of Compact Operators

In this paper the concept of unbounded Fredholm operators on Hilbert C∗modules over an arbitrary C∗-algebra is discussed and the Atkinson theorem is generalized for bounded and unbounded Feredholm operators on Hilbert C∗-modules over C∗-algebras of compact operators. In the framework of Hilbert C∗-modules over C∗-algebras of compact operators, the index of an unbounded Fredholm operator and the...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995